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1. Executive Summary

This document provides a summary of the data science and engineering work undertaken
in 6 weeks to deliver a working end-to-end prototype service for auto-archival of
documents for The National Archives.

The report documents the capabilities of the Amazon Comprehend service for Natural
Language Processing (NLP) along with findings related to the supporting Amazon services
and bespoke code required to provide a data pipeline which feeds the Comprehend
custom machine learning model for document classification.

The prototype developed provided the following capabilities:

e Process ~375GB of unstructured document data using secure public cloud storage
and services

¢ Index, filter and extract text from 15 different document formats across all input
documents in 2 hours

¢ Provide a data science pipeline for removing highly similar documents and
preparing the labels and text for ingestion into AWS Comprehend

e Train binary and multi-class classifiers using AWS Comprehend which are able to
accurately classify documents both across preserved / not preserved classes as
well as individual disposal schedules

This report provides details of the following aspects of the prototype delivery and
discovery outputs:

Comprehend modelling findings and results

Data pipeline tooling and development work

Assessment of off-the-shelf functionality and bespoke development
Lessons learned and alternative approaches considered

Skills and expert knowledge required

Indicative AWS hosting and operating costs
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2. State of Al market in the Information Management and
Compliance space

Broadly, there is a shift away from large up-front EDM software purchases to more tailored,
flexible and agile solutions using the public cloud.

Public cloud computing provides a cost-effective way to store and process large volumes
of unstructured and semi-structured data at scale and machine learning can aid
organisations in reducing the scope of the effort required to apply structure to and extract
value from these large datasets.

Challenges exist in the adoption of machine learning, both through skills to develop and
evaluate viable solutions, but also the skills required to operationalise these efforts.

There is a disparity between the number of organisations who consider machine learning
and Al fo be important strategic initiatives and the number who feel confident in
implementing them and taking their prototype solutions to production.

Due to the variety of data and potential use cases, it can be difficult to identify an off-the-
shelf solution what can address an organisation’s specific needs. More often a holistic
end-to-end solution may entail use of a COTS product, some bespoke development, use
of public cloud infrastructure and investment in the skills and cultural change required to
meet business and user needs.

As applied to information management and EDRM, techniques for Al and Machine
Learning will usually encounter some or all of the following challenges:

¢ Training needs to be accurate can be costly and time consuming to manage
without an investment in automation

¢ Generdlising classification to a wide variety of data sources and unstructured
documents is challenging without bespoke code written to standardise the data

¢ Interpreting model results and making necessary adjustments in training of the
classifier can be difficult without an understanding of classifier performance metrics

3. Amazon Web Services - Comprehend Overview

The core product under evaluation as the subject of this report is AWS Comprehend, a
Natural Language Processing (NLP) product available from the AWS machine learning
services suite.

Comprehend provides an APl which wraps several off-the-shelf models for common NLP
tasks such as key phrase extraction, sentiment analysis and topic modelling which can be
used out-of-the-box without any custom model training.

Comprehend also provides an API to allow for custom models to be trained using an
organisations own data, so that users may tailor a classification process which meets their
own specific business requirements.
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£ Entities Sentiment
Key Phrases Syntax
Amazon Comprehend Language Topics

Social media posts, emails,
web pages, documents,
phone transcripts and
medical records

Automatically extract key

phrases, entities, sentiment,

language, syntax, topics and Document Classifications
document classifications

Extracts data, topics, and document
classifications with confidence scores

Figure 1 Comprehend NLP Functionality (ref. AWS)

Comprehend is a fully managed service — there are no servers to provision with a flexible
“pay for what you use" pricing model (ref. Appendix B)

The service's potential is most fully realised when taken within the context of the powerful
integration that is available with the rest of the AWS technology platform, with which it is
designed to integrate.

As demonstrated in the detail of this evaluation, use of services such as Simple Storage
Service (S3) for text storage and AWS Compute and Textract services for document pre-
processing can deliver an end-to-end capability for processing and classifying a wide
range of unstructured data.
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4. Data Collection

4.1 Import from varied data sources

4.1.1 Amazon S3

For this evaluation all data was initially stored with the Simple Storage Service (S3) which is
Amazon's web-scale cloud storage service.

Each of the AWS services used in this prototype can be configured to read directory from
S3 buckets — a bucket being the route storage container or top-level directory — without
requiring any custom components for integration.

These services are designed with S3 as the mechanism for file storage in mind and it is
specifically provided for this purpose. The general recommendation is that all input data is
made available in an S3 bucket as the initial data ingestion step for the pipeline.

For example, the following bucket structure was used for the prototype pipeline:

Bucket

ina-poc-staging

tna-customer-files

tha-exiracted-text

tna-tar-bucket

tna-classifier-test/
output

Contents

Bucket to store input files

Store index files containing the
list of Objective and Shared
Drive input file locations and
their basic metadata

Store raw text from text
extraction process

Store archive produced by
Comprehend batch process

Store classification output

Tools

Input for custom code +
Textract

Comprehend, Textract,
custom code

Output of custom code +
Textract

Input to Comprehend
batch

Output of Comprehend
batch

Output of Comprehend
classification

In addition to these main items, we created other intermediate buckets which

Comprehend uses to store files during model training runs and for ancillary outputs such as
audit log information.

4.1.2 Local File System

As stated above, being cloud services and with the intended use case that of bulk
classification of documents, the recommendation is to store the input data in S3.

Apart from the close integration with the $3 service and the AWS text processing tools, the
co-location of the data within the AWS environment is recommended to ensure that
processing is both performant and secure.

The initial upload of the input data from local disk to the AWS S3 service took
approximately half a day to transfer the ~375GB of data over the corporate internet
connection using the secure S3 command line client.

©Kainos2019 COMMERCIAL-INCONFIDENCE 4/35



Subject to Contract Issue:1/0

Another possibility, not evaluated as part of this proof-of-concept is to use AWS Elastic File
System (EFS) which is an NFS-compatible file system solution from Amazon. This can be
used to mount on-premise file storage for direct access by resources in the AWS cloud.

Note that this option is predicated on a private networking link being established between
the on-premise infrastructure and infrastructure in the AWS account.

This can either be accomplished virtually (using a private VPN) or with a dedicated fibre
connection (Amazon DirectConnect). Whilst this makes a solution viable from a security
perspective, the performance (and financial) cost of transfer of data over the network
would still need to be assessed and taken into account.

4.1.3 Other Options

Batch processing operations such as Comprehend training require an S3 location to
efficiently read the set of target files. However, the APIs for Classification and certain APIs
provided by Textract and other services accept data from direct HTTP POST connections.

During evaluation, indexes were used which stored the list of text items to be passed to
Comprehend for classification. Whilst this was stored in a CSV file for convenience,
database options such as Relational Database Service (RDS) and DynamoDB (Amazon'’s
NoSQL offering) were also considered as storage options for this data and in a production
system one of these would be the better option for maintaining indexes.

5. Pre-processing

5.1 Data format exiraction
5.1.1 Supported Formats

The table below shows the full list of documents types which were considered as part of
the evaluation and whether they were included in the prototype:

Extensions Description Included in prototype?
.doc / .docx Microsoft Word Yes

pdf PDF Yes

.msg Emaiil Yes (body, no attachments)
Xls / .xlsx Excel Yes

It Text Yes

.CSV Comma-Separated Values  Yes

.htm / .himl HTML files Yes

.ppix PowerPoint Yes

rif Rich Text Format Yes

Jpeg, .png, iff Images Yes

.mov, .mp4 etc. Video No*

.mp3, .wav eifc. Audio No*

* Please refer to section 9.2 Additional Data Formats for further information on audio/video
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5.1.2 AWS Texiract

Amazon Textract is a managed service for extracting text and metadata from scanned
documents.

For the purpose of this evaluation, the OCR functionality which extracts raw text and
positional information from the documents was used, however the service also provides
the capability to extract form and table data in a structured format.

None of this functionality requires any pre-training or custom model development.

AWS Textract supports the following three document formats for scanned documents:

¢ PDF
o« JPG/JPEG
PNG

As such, AWS Textract was evaluated primarily as an extension of the text extraction
process developed for the prototype solution.

It was found to have generally superior accuracy on scanned documents in the above
formats compared to using the open source ‘Textract’ library written in Python.

Given that this naming is confusing — we wiill refer throughout the remainder of this
document to ‘AWS Textract' and 'OSS Textract' when referring to either the Amazon
service or Open Source Python library respectively.

5.1.3 Pipeline Development

The following diagram illustrates the end to end process which was created as part of this
evaluation to process the raw input data formats across the range of documents supplied
as part of both the Objective/EDRM and Websites/Shared Drive data sets and to use
Comprehend to train and classify documents using that extracted text.

+ Model training
Te;:ﬂt‘:l:ft ‘@ Cnmpreﬁz:lg + Endpoint for
classification job
As needed

il!_-lecs :
! Comprehend
¥ Classification
Text Job -
. clL)S el )
Exctracﬂlgg m Tl CloudWatch
T Manitoring
i 83 _— — . — s IAM
Source Classification Sapuri
Files ' Index ' Tet Results i

Indexing
Y of files
+ Exploratary
analysis
+ Prototyping
SageMaker

Figure 2 E2E data pipeline
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Development Process

— —
Source Extracted
Documents Text

ﬁ

ECS Fargate
Cluster

| 0—

Schedule partitions files o— - @
by selected key paths
Schedule Fargate task

~

(aka directories)
Textract Service
called
as required

Fargate task Fargate task

- /

& docker L‘H

- docker build Elastic Container

Developer
P - Python code - docker tag Registry

- Dockerfile -docker push

Figure 3 Text exiraction process

The figure above illustrates the following development process for text pre-processing:

Developer writes text processing code in Python and packages it using Docker
Docker image is published to Elastic Container Registry (ECR) to make it available
for use in AWS

e Developer writes a task schedule which defines the text processing batch job in
Elastic Container Service (ECS)

¢ The ECS job pulls in the configured Docker container from ECR and runs the job. The
job will have been configured to pull in documents from a source S3 bucket and
write the extracted text out to another target bucket location.

Task Definition

The schedule is split into two jobs — one for the Objective/EDRM data and other for the
Websites/Shared Drive data.

The code which runs within each task performs the following steps for both input sources:

1. Read the pre-indexed list of files for the data source
2. Filter the index using a configured list of:
a. File extensions (e.qg. only read documents, exclude media like .mp3)
b. Prefixes (e.g. only process documents under “Websites/clive 7awkins”
3. Loop through the filtered list and process in fixed sized batches:
a. Attempt to extract text from each file in the batch locally
b. OPTIONALLY: Send to AWS Textract if it could not be processed locally
c. Filter out:
i. Small files (< 100 characters in length)
ii. Empty files

©Kainos2019 COMMERCIAL-INCONFIDENCE 7/35
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ii. Special characters (e.g. |)
d. If the text was valid then output it to the S3 extracted text bucket

Performance

Like Comprehend and most other AWS services, AWS Textract exposes an APl which allows
external clients and processes to interact with it.

Thus an API call to AWS Textract is inherently slower than calling the Python code to invoke
the OSS Textract function on a document.

It may take approximately 1 minute to process an average sized PDF (say 1MB) using the
Textract Asynchronous API.

As a general approach we have used the OSS Textract library to process all documents
which are in one of the non-PDF/Image formats and for these formats we only hand off a
call fo AWS Textract where we are unable to process the PDF/Image locally.

Output

The final output of this process is a new S3 bucket which contains all of the text which the
job has been able to extract from documents with the supported file extensions.

The directory structure of the output retains the same hierarchy and thus file names as the
original data and we use this convention to link the two. The only difference is that any
individual files now have the .txt extension in the output bucket.

The table below shows some of the statistics for processing the files for text extraction using
the concurrent task schedule shown in the figure above

Totals are post-filtering, i.e. do not include documents that we have filtered out based on
their file type.

The % of files not extracted accounts for cases we drop due to:

Small file ( < 100 characters)

File just contains garbled content {special characters)

No text content was extracted

Other errors (e.g. there was an issue with the file encoding)

Between the two data sets, generally we see a lower overall percentage of usable text
content in the Shared Drive data, which we would expect given the nature of the data
set.

NOTE: Total run time is per task so the total elapsed time for processing the entire
Objective data was Thr 7 mins and for the Share Drive data 2hrs 20 mins — the time of the
longest running task.

Objective data set

TaskID  Sub-directories File counts Total Run time
processed

1 a/DA/ Total to process: 23,994 Thr 7 mins
a/DS_1/ Total extracted: 22,299
a/ASD/ (93%)

2 a/LPaD/ Total to process: 20,474 Thr 5 mins
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a/MaC/ Total extracted: 19,539
a/PMO/ (95%)
a/LS/

3 a/KalMT/ Total to process: 23,995 59 mins
a/ITO/ Total extracted: 22,968
a/IP/ (96%)
a/GA/

4 a/PPDaCM/ Total to process: 13,273 45 mins
a/RaAE/ Total extracted: 11,856
a/SP/ (89%)
a/WA/
ao/CEaE/
a/DS/

5 a/Am/ Total to process: 16,943 42 mins
a/Cal/ Total extracted: 15,220
a/CC/ (90%)
0/20032008fp/

Website data set

Task ID Sub-directories

processed

File Counts Total Run Time

1 DSD Newsletter/ Total to process: 3086 18 mins
Total extracted: 1786
_docs/ (58%)
Taxonomy/
Moving Here/
2 FOI/ Total to process: 1677 10 mins
EngD/ Total extracted: 1189
(71%)
3 Webteam/ Total to process: 18,243 2hrs 20 mins

Deployment and Orchesiration

Total extracted: 9173
(50%)

Redacted under FOI exemption 40(2)

As mentioned above, ECS was used to provide the platform on which text extraction and
bath comprehend processing jobs could be run.

Specifically AWS Fargate was used which allows the Docker containers which package
the applications to be run in a serverless manner on ECS.
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The benefit of this is that developers can concentrate on running and testing the
application without having to explicitly specify and configure a cluster of dedicated
compute hardware.

Fargate allows tasks to be triggered by other events or to be scheduled via simple CRON
syntax (i.e. a date and time) which was the option chosen for the prototype.

Comprehend Custom Classification

After the Text extraction jobs have been completed, the Custom classification job will be
called to classify each of the extracted text files stored on S$3. The job passes each file to a
classifier, which is trained to classify TNA documents using comprehend. This will be
covered in greater detail in the modelling section of this report (6. Models).

5.2 Duplicate detection

While each document had a unique file key, a portion of them shared identical content
with at least one other document. This presents two issues, specifically by intfroducing
sampling bias into the model training and producing overly optimistic performance
metrics during the validation and/or test stage.

Consequently, duplicate documents were removed during pre-processing to ensure that
the model did not overfit during training, that is learn the patterns in the fraining dataset
too closely so that it would not generalise well to new, unseen data.

As with complete duplicates, documents that are near-duplicates, those that share an
extremely large proportion of text to at least one other document, would also need to be
removed from the dataset that would be used to frain the model to ensure generalisability
and limit training bias.

The similarity between documents was measured by first converting each text document
into a vector (a numerical array with magnitude and direction), more specifically a term-
frequency inverse-document-frequency vector, and then calculating each document
vector's cosine similarity scores with every other document vector, producing a
nonnegative symmetric matrix of cosine similarity scores.

Document1 Document2 Document3 Document n

W 1.00 0.64 0.97 0.98
W 0.64 1.00 0.81 0.99
W 0.97 0.81 1.00 0.75

W 0.98 0.99 0.75 1.00

As shown in the example above, these similarity scores ranged from 0 -1, by which a
higher score indicated a higher similarity between documents (1.0 indicating perfect
similarity, for example). A threshold of 0.97 was established as a means of identifying
documents and their near-duplicates, although this was subject to change depending on
the amount of data used for training and testing. Documents that had a similarity score of
2 0.97 with one other document or more (other than itself, of course) were dropped from
the dataset accordingly.
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5.3 File metadata

As part of the data pipeline for filtering and text extraction, the initial stage is to pre-index
all of the files stored in the source S3 bucket.

This index provides basic file metadata such as the key, extension/type and datetime
information and enables fast access to different subsets of files as desired by filename
prefix (i.e. a particular sub-directory) or by extension.

This more general metadata does not impact on the Comprehend modelling approach
as the classifier is trained purely on documents contents, however there are other
capabilities of the service which may be used as a way of building up a more
sophisticated metadata catalogue.

Comprehend offers additional natural language processing API's, which can be used to
gather insights on the data. We evaluated entity recognition, which successfully extracted
entities such as organisation, date or location and returns a confidence score. We
ultimately didn’t use this service, as we believe the custom classifier has it's own inbuilt
entity recognition and doesn’t require this information to be passed in. If this information
was needed for external analysis of the documents, the API could easily be called and
returned.

6. Modelling

In addition to having the ability to obtain various insights frorn documents such as entity or
key phrase extraction, sentiment analysis and topic modelling, AWS Comprehend offers
the capability to train custom models in order to classify documents.

This is a two-step process. First, a custom classifier is trained on the classes of interest and
once the classifier is trained, unlabelled documents can be sent for classification.

The Objective (labelled) data set is composed out of over 90,000 files across 31
repositories and 20 disposal schedules. Given the size and complexity of the Objective
data set, a number of modelling approaches were taken to demonstrate how
Comprehend performs across different classification use cases.

A summary of the use cases is presented below:
Use Case 1 (2 Class Generic Model):

Evaluate performance of a 2-class model frained and tested on documents across all
repositories.

Use Case 2: (2 Class Model, Limited Repositories):
Evaluate performance of a 2-class model frained on a subset of repositories.

This is done to see if applying selection logic with respect to which repositories are
included in the train/test data sets offers an improvement in model performance over Use
Case 1.

Use Case 2.1: (Multiclass Model, Limited Repositories):

A variation of use case 2, demonstrates performance of a multiclass model on a subset of
repositories.

This is done to demonstrate if disposal schedules can be predicted accurately.
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Use Case 3: (Single Repository, Test on Separate Repository):

Evaluate performance of a model tfrained on one repository and tested on documents
from a different repository.

The scope of this use case is to demonstrate if a model can generalise across different
repositories / departments.

Use Case 3.1: (Single Repository, Small Training Subset):

Evaluate performance of a model frained on a small subset of documents (150/class) from
one repository and tested on the same repository.

This is fo demonstrate if a model offers acceptable performance while trained on a very
small subset of data.

6.1 Inpuis

When training a Comprehend classifier, the data must be in a single .csv file. For each line
in the file, the class name is placed first, followed by the text of the complete document.

Text of document 1

Text of document 2

Text of document 3

Comprehend requires a minimum of 10 documents per class to train the model although
150 documents per class has been attempted as a minimum as part of this report (use
case 3.1).

The total size of the fraining document must be less that 5GB and each individual
document within the .csv must be less than 10MB. All documents used for the use cases
below were below 100KB in size, which constitute around 98% of the fotal .ixt documents.

6.1.1 Use Case 1: Generic 2 Class Model

A total of 92,905 documents split across 31 repositories were part of the initial corpus of
documents for the training and testing of the generic 2 class model.

Out of these documents, 67430 documents remained after similar documents were
removed as well as documents above 100KB. With a 90-10 ratio of fraining to testing
documents, 60,687 documents were used for training and 6,743 were used for testing.

A summary of the input dataset is provided in the table below:

No. of Documents Class Distribution

92,405 70,811 Not_Preserved
22,094 Permanently_Preserved
67,402 50,089 Nof_Preserved
17.341 Permanently_Preserved
60,687 45,080 Nof_Preserved
15,607 Permanently_Preserved
6,743 5,009 Not_Preserved

1,734 Permanently_Preserved
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6.1.2 Use Case 2: 2-Class Model Trained on 5 Repositories

Compared to the generic 2 class model trained on the entire text corpus, the second use
case focused on a specific set of repositories:

Digital Archiving (21,664 documents)

Information Policy (10,463 documents)

Archives Sector Development (3,841 documents)
Collection Care (1,826 documents)

Strategic Projects (1,292 documents)

These repositories comprised of 27,579 documents in total. After removing files above
100KB in size as well as duplicates and near duplicates, 27,256 documents remained. With
a 90:10 ratio of training to testing documents, 24,531 documents were used for training
and 2,725 were used for testing.

No. of Documents Class Distribution

27,579 18,227 Not_Preserved
9.352 Permanently_Preserved
27,256 17,983 Not_Preserved
9.273 Permanently_Preserved
24,531 16,184 Not_Preserved
8,347 Permanently_Preserved
2,725 1,799 Not_Preserved

926 Permanently_Preserved

6.1.3 Use Case 2.1: Mulliclass Model Trained on 5 Repositories

Use Case 2.1 makes use of the same repositories as Use Case 2, but instead of the
Permanently Preserved/Not Preserved category labels, is labelled according to the 15
disposal schedules for these documents. Of these 15 disposal schedules, 12 are in the “Not
Preserved" category and 3 and in the “Permanently Preserved” category.

A distribution of these documents across disposal schedules can be found in the table
below:
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No. of Documents Class Distribution

27,522 Not Preserved:
02 5959
24 4085
05 2626
16 1372
23 1277
20 870
07 776
11 574
25 202
03 193
10 183
28 109

Permanently Preserved:
21 1745
24 722
33 6829

27,199 Not Preserved:
02 5959
24 4085
05 2626
16 1372
23 1277
20 870
07 776
11 574
25 202
03 193
10 183
28 109

Permanently Preserved:
21 1745
24 722
33 4828

24,479 Not Preserved:
02 5272
24 3611
05 2329
16 1235
23 1148
20 777
07 697
11 516
25 173
03 171
10 157
28 98

Permanently Preserved:
21 1535
24B 641
33 6119

2,720 Not Preserved:
02 586
24 402
05 259
16 137
23 128
20 87
07 77
1 57
25 19
03 19
10 17
28 11

Permanently Preserved:

21 17
248 71
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L 33 679

6.1.4 Use Case 3:

A total of 5,074 documents were considered from the ‘Information Management’
repository, with the intention of training on the entire corpus of documents within this
repository and testing on a separate, unique repository to measure generalisability.

Once documents exceeding 100 KB had been removed, and duplicates and near-
duplicates had been removed, the remaining 4,652 documents were used for training.
Documents from the ‘Strategic Projects’ repository, amounting to 3,815 total, were then
preserved for testing.

A summary of the input dataset is provided below:

Number of Documents Class Distribution

Total (pre-cleaning) 5,074 3.365 — Not Preserved
1,709 — Permanently Preserved
Training set (post- 4,652 2,991 — Noft Preserved
cleaning)

1,661 — Permanently Preserved
Test set 3,765 3,443 — Noft Preserved

372 - Permanently Preserved

6.1.5 Use Case 3.1:

An additional model was trained using a small sample from the ‘Information
Management’ repository, 300 documents — 150 documents per class, which would then
be tested on the remaining documents within the repository, totalling 4,352 documents.
This would give an indication of Comprehend’s ability to identify patterns that distinguish
permanently preserved documents and those that aren’t with the near-minimum amount
of training data.

A summary of the input dataset is provided below:
Training set 300 150 — Not Preserved
150 — Permanently Preserved
Test set 4,352 2,841 — Not Preserved

1.511 — Permanently Preserved

6.2 Outputs

For an input data set that is formatted as one document per line, the output file will
contain one line for each line in the input document. Each line will contain the file name,
the line number of the input line, the classes found in the document and the confidence
level for the particular classification. These outputs have then been transformed into
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confusion matrices as well as model performance ratings such as accuracy, precision and
recall.

{"File": "test_v3_less_than_10.csv", "Line": "13686", "Classes": [{"Name": "PERMANENTLY PRESERVED", "Score": 0.8441},
{"Name": "NOT_PRESERVED", "Score": 0.1559}]}

Figure 4: Example of Comprehend classification output

6.3 Model Customisation
6.4 Model Pipeline development

-‘ ] [
Source bucket Tar bucket

ECS Fargate
Cluster

Development Process

Schedule fargate @
task. %%"e
Fargate task
Comprehend

Custom
\_ _/ Classification

A9 -8 €

-Python code -docker build Elastic container
Developer _Dockeffile ~docker tag Registry
-docker push

Figure 5 Custom classification process
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Tar bucket Output bucket

ECS Fargate
Cluster
¥
v

Schedule fargate A ] ey
task. W
Fargate task

A9 % @

-Python code -docker build Elastic container
-Dockerfile -docker tag Registry
-docker push

Developer

Figure 6 Custom classification Extraction Process

Task definitions

There are two jobs which must run synchronously, the first job performs the classifications
and the second performs the extraction process. The files can be either multiple files within
a single folder or a single csv, they will be classified and then output in the same format.
The job ID created by the custom classification job must be passed into the custom
classification extraction job.

Custom Classification

1. The task job calls the custom classifier, with specified variables from the user

The input bucket

The file input format- whether it is a folder of text files or a single csv

The output bucket-tar bucket

The prefix- the file or folder to be classified

The data access role

The document classifier

2. This WI|| then run via comprehend and store the result in a tarfile in S3. The call will
return a comprehend classifier job id that will refer to the tarfile and can be used to
extract the contents.

3. The tarball file is zipped and will require extraction, but contains the classifications
produced by the classifier, specifying the classes used.

meap0UQ

Custom Classification extraction

1. This task job uses specified variables to extract the tarball
a. The input bucket- tar bucket
b. The file input format- whether it is a folder of text files or a single csv
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c. The output bucket
d. The prefix- the file or folder where the extracted file will be stored
e. The job id of the classification
2. The task job will locate and read in the tarball from the specified input bucket on S3
via the extract_tarball class. The returned result is a list of dictionaries, each
containing the classification of a file.
3. The tarball is then processed dependent on the input format
a. Store single file:
i. Creates a data frame of predicted classes and extracted confidence
scores
ii. Writes data frame to single csv
ii. Stores csv in S3, under specified location and original file name.
b. Store multiple files
i. Processes each dictionary in the list, extracting each file as json
ii. These are written to S3 as the original file name, under the nested
directories.

Performance

The jobs themselves take a very short time to run, with the Custom Classifier making it's call
to the comprehend function in under 1 second. For the classification for the websites files
(11843 files) it took 6.06 minutes to classify. The Custom Classification extraction job took 20
seconds to extract the classifications of these files and write them to a CSV.

Output

The outputs are the files classifications. They will be output in two formats. Either as a single
csv file, e.g. website_text.csv, in a folder by the same name in the output bucket, listing
not preserved or preserved and the confidence for each. Or they will be saved as the
same file they were extracted from, with a json containing the classification results, e.g.
source txt.

6.5 Sharing / Export

The pipelines that have curmrently been configured for text pre-processing and data
ingestion into Comprehend could be re-used to train classifiers on documents from
additional repositories.

There is an element of ‘fine tuning’ such as adjusting thresholds for removal of highly similar
documents from the fraining data set as well as selecting disposal schedules which have
over 100 documents in order to train the model with a sufficient number of documents per
class / disposal schedule.

6.6 Interpretable / Explainable Results

Building a confusion matrix gives a good indication on the classes / disposal schedules for
which adding more data could help model performance. For example, if a high
percentage of documents for a particular repository are misclassified, adding more
document samples to that repository can help aid model results.

The models that have been created for this report have been developed by iterating
through a number of input data set configurations and assessing model validation metrics
and confusion matrices in order to recommend the best performing models.
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6.7 Support “Technology Assisted Review”

The current Comprehend models can be re-frained if the records manager makes any
corrections to the input training data set although automatic re-training of the model is
not supported. Model performance metrics, which are covered in the next section, allow
the user to evaluate the model and refine the model based on this feedback.

With respect to outliers, these are not automatically highlighted by the model. The most
likely outcome is for an outlier to be classed as a ‘false negative’ (not preserved). Certain
bespoke code can be written to identify documents that have different structures to what
the model was trained on initially and highlight these to the records manager.

6.8 Evaluation of Results

Upon training job completion, Comprehend offers a number of model performance
metrics based on a validation dataset that is automatically set aside {10% of the training
data set by default). These metrics provide a way of assessing model performance during
fraining, however, in order to get a true reflection of model performance, a separate test
dataset has been used.

Test data set results have therefore been presented on a model by model basis in the
following subsections. These test results are for the test data sets detailed in the Inputs
subsections.

In addition to a confusion matrix, a number of metrics have been presented for the test
data sets to cover model performance. These metrics have been provided to assess
overdll model performance as well as performance across each class.

Accuracy
Precision
Recall

F1 Score
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6.8.1 Use Case 1 Results

Confusion matrix
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Figure 7: Confusion matrix for generic 2 class model

Overall Perfformance
Accuracy Precision Recall F1-Score

0.82 0.84 0.66 0.79

Class Performance

Class Precision Recall F1-Score
Not Preserved 0.81 0.98 0.89
Permanently Preserved 0.87 0.35 0.50

Training Time: 3 hours 27 minutes 55 seconds

Classification Time: 4 minutes 39 seconds
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6.8.2 Use Case 2: 2 Class Model Results

Confusion matrix

1500
NOT_PRESERVED
1200
=
£
E 900
&
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PERMANENTLY PRESERVED
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NOT PRESERVED PERMANENTLY PRESERVED
Actual
Figure 8: Confusion matrix for 2 class model frained on 5 repositories
Overall Performance
Accuracy Precision Recall F1-Score
0.95 0.95 0.94 0.95
Class Performance
Class Precision Recall F1-Score
Not Preserved 0.95 0.98 0.96
Permanently Preserved 0.95 0.90 0.92

Training Time: 5 hours 7 minutes 55 seconds

Classification Time: 7 minutes 39 seconds
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6.8.3 Use Case 2.1: Multiclass Model Results
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Figure 9: Confusion matrix for 15 class classification model
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0.94

Training Time: 28 hours 8 minutes 10 seconds

Classification Time: 4 minutes 37 seconds
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0.83

600

450

300

150

F1-Score

0.92

©Kainos2019

COMMERCIAL-INCONFIDENCE

22/35



Subject to Contract Issue:1/0

6.8.4 Use Case 3 Results

Confusion Matrix
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Figure 10 Confusion Matrix for single repository Binary Classification Model

Overall Perfformance
Accuracy Precision Recall F1-Score

0.87 0.45 0.48 0.47

Class Performance

Class Precision Recall F1-Score
Not Preserved 0.90 0.97 0.93
Permanently Preserved 0.00 0.00 0.00

Training Time: 36 minutes 53 seconds

Classification Time: 6 minutes 38 seconds
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6.8.5 Use Case 3.1 Results

Confusion Matrix
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Figure 11 Confusion Matrix for Small Sample Binary Classification Model

Overall Perfformance
Accuracy Precision Recall F1-Score

0.85 0.84 0.83 0.84

Class Performance

Class Precision Recall F1-Score
Not Preserved 0.88 0.90 0.89
Permanently Preserved 0.81 0.76 0.78

Training Time: 12 minutes 53 seconds

Classification Time: 6 minutes 37 seconds
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7. Results and Findings

Across the different use cases, it can be said that model performance is good/satisfactory
as long as different factors need to be taken info account when training custom
Comprehend classifiers. A number of observations have been recorded regarding these
factors in the following paragraphs.

One of the first observation that can be made is around models generalising across

different repositories. Use case 3 results have shown that a model that is trained on one
repository is not able to correctly classify documents from a different repository. This can
most likely be attributed to the highly dissimilar nature of documents across repositories.

Also with respect to a model’s ability fo generalise, the 2-class model trained on 5
repositories (use case 2) had better performance than the 2-class model trained across alll
of the repositories (use case T1). This could be attributed to the fact that the model used in
use case | did not benefit from removing repositories with a large class imbalance (>95%
“Not Preserved"” class) or from removing sets of documents which had less than 50
documents per disposal schedule (due to Comprehend not training well with under 50
documents per class).

The multiclass model presented in use case 2.1also gave good overall model results even
though it used 15 disposal schedules for classification as opposed to “Not
Preserved"/"Permanently Preserved” document classifications. Some of the disposal
schedules such as 25 and 28 did not perform as well, which could be attributed to the
relatively low number of documents for these disposal schedules in the fraining set (173
and 98 respectively).

Finally, use case 3.1 demonstrates that model performance is acceptable with a relatively
small number of 150 documents per class. This could lead to the conclusion that a

labelling effort of a few hundred documents per repository could be sufficient to enable a
classifier that can be used across thousands of additional documents from that repository.

The observations across these use cases along with previous observations from the text
pre-processing steps have been summed up below:

¢ Duplicate documents or documents with a high degree of similarity need to be
removed from the training set as this could lead to bias in the model and
subsequent poor performance

e Care needs to be taken to remove classes of documents/disposal schedules with
less than 50-100 documents when training the model

¢ Highly imbalanced classes (>95% not preserved) should be subsampled in order to
train the model on a more balanced data set

¢ Classifiers trained on one repository will not perform well on documents provided
from a different repository

o Classifiers trained on 150+ documents per class have satisfactory performance,
although the classifier will perform better with additional documents

e Multiclass models with 15+ classes can perform well provided all previous points are
taken into account
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8. Deployment / GUI

8.1 User Access Control

The AWS platform has a rich and powerful Identity and Access Management (IAM) service
which acts as the lynchpin for securing cloud resources across all AWS products and
services.

IAM provides the ability to manage identities through standard Role Based Access Control
(RBAC) concepts such as Users, Groups and the Policies which define access to specific
resources. It also includes the concept of Roles which provide a mechanism for other
identities or application services to temporarily assume permissions to perform a particular
task.

For example, the Users for this evaluation were organised intfo a single Group and the
Policy for this group applied restrictions for all users, for example:

e Allow read-only access to $S3 bucket containing source Objective and Websites
documents
Prevent creation of any resources outside of the eu-west-2 (London) region
Provide least-privilege permissions to any S3 buckets used by the text extraction
and batch training processes

Integration with existing, externally managed identities was not covered under the scope
of this evaluation, but is possible to achieve using the AWS Cognito service.

This allows the AWS services to integrate with other identity providers such as Active
Directory and can also provide Single Sign-On functionality.

8.2 Ability to tfrack progress

All services included in the prototype development have integration with AWS's standard
tooling for logging and monitoring — primarily CloudWatch.

This provided observability of the batch processes execution over time and the counts for
records analysed, written, dropped etc. are taking from this logging information.

CloudWatch provides a greater degree of power than was exploited during this
evaluation however, it also includes the facility to capture this logging information as
metrics which can be added to dashboards and alarms and triggered actions can be
configured based on user-defined thresholds and rules.

For example, alerts could be configured if a certain % of document text cannot be
extracted from a new input data source, or character count could be captured as a
metric from which exact costs could be calculated before passing the text to
comprehend for classification.

8.3 User Collaboration

The Amazon platform is an inherently multi-user and multi-group environment for solution
development.

The team involved in building the prototype service mixed skills from both engineer and
data science and were able to achieve success using the collaboration tools such as AWS
SageMaker. SageMaker provides a means of sharing Python Jupyter notebooks for
exploratory analysis and custom model development. The team primarily used these
notebooks to test integration with AWS service APIs and also to analyse the document
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corpus. SageMaker notebooks made it easy to share both code and findings with other
members of the team.

8.3.1 Comprehend OOTB

Comprehend allows users to build custom natural language processing (NLP} models and
use built-in models to analyse text either directly through the Ul (console) or through
programming software development kits (SDKs) in either Python, Java or C#. The built-in
models analyse input text and provides the following:

Named-entity detection

Key phrases detection

Dominant language determination
Sentiment determination

Syntax determination

Confidence scores for the above insights are also provided once analysis has been
completed. Programming experience is not a requirement to perform small-scale analysis
with Comprehend, as text can be input into the console text box and analysed directly.

Input text
Supported languages [4

Analysis type
O Built-in

View real-time insights based on AWS built-in models

Custom
View real-time insights based on custom models from an endpoint you've created

Input text

Amazon.com, Inc. is located in Seattle, WA and was founded July 5th, 1994 by Jeff Bezos, allowing customers to buy everything from books to
blenders. Seattle is north of Portland and south of Vancouver, BC. Other notable Seattle - based companies are Starbucks and Boeing.

272 of 5000 characters used.

Clear text

Figure 12 Comprehend Console Input
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Given the nature of this project, however, with the number of documents to be processed
being in the order of 100,000, analysis jobs can be performed in batch using one of the
aforementioned SDKs. In this instance, the AWS SDK for Python, Boto 3, was used to
analyse text extracted from the list of supported formats.

8.3.2 Comprehend Custom

In addition to the built-in models, Comprehend permits users to build custom document
classification models that take advantage of its underlying deep learning architecture.
These models take documents and their corresponding class labels, either binary, multi-
class or indeed multi-label (in the instances when a document can have more than one
associated class), as input to frain a bespoke model. Customers can use the console for a
code-free experience to build and train a model, and subsequently run analysis jobs,
either in real-time or in batch, to classify unlabelled documents.

During training, the only mandatory configurations are the location of the S3 bucket
storing the training data and an IAM role with access permissions to that S3 bucket.
Furthermore, this IAM role can be created during the setup process.

Analysis jobs are set up in a very similar fashion, by which the analysis type must be

Insights info

Key phrases Language Sentiment Syntax

Analyzed text

Amazon.com, Inc. is located in Seattle, WA and was founded July 5th, 1994 by Jeff Bezos, allowing customers to buy everything from books to
blenders. Seattle is north of Portland and south of Vancouver, BC. Other notable Seattle - based companies are Starbucks and Boeing.

¥ Results
Q 12 > @

Entity Category Confidence

Amazon.com, Inc. Organization 0.84

Seattle, WA Location 0.98

July 5th, 1994 Date 0.99+

Jeff Bezos Person 0.99+

Seattle Location 0.99+

Portland Location 0.92

Figure 13 Comprehend Console Output

specified, custom classification in this case, the custom classification model that has been
built, input and output S3 bucket locations, and an IAM role with relevant access
permissions.

Alternatively, training jobs and custom classification jobs can be initiated using one of the
AWS SDKs.
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8.3.3 AWS End-fo-End

Based on the criteria for this evaluation, the skills required to develop and end-to-end
prototype on the AWS platform encompass the following areas:

Software development

Bespoke code was required to build a reliable, performant and maintainable pipeline for
pre-processing of documents and to make most efficient use of the AWS Paas services,
both in the sense of record processing throughput and cost efficiency.

For example, because no one cloud Paas service could reasonably cater for the full
range of document formats under consideration, we looked to open source libraries such
as the Python Textract library. This allowed us to process .doc/docx, Excel, Outlook
messages etc.

To rapidly prototype solutions we leveraged Amazon SageMaker which is an environment
for developing machine learning applications using Python notebooks.

SageMaker provides a great platform for collaboration between engineers and data
scientists as it is usable by both and can just as rapidly be use for prototyping integration
with AWS services as being used to test machine learning models.

As we refined and firmed up our approach to data pipeline components the code was
migrated into standalone Python applications deployed via Docker (ref. Deployment
Process)

Data Science

Comprehend offers a number of advantages with respect to training custom models as it
eliminates the process of model optimisation which requires extensive knowledge of
machine learning. This being said, the model needs to be provided with high quality data
in order to obtain a performant model.

Given some complexities present in the data, knowledge of how to carry out exploratory
data analysis and make relevant observations with respect to the structure of the data is
required. As an example, within the Objective data set, there are numerous repositories
with a high class imbalance. Writing custom code to identify these and apply the
necessary filters is needed in this case.

As was mentioned in the Duplicate Detection section, additional methods had to be used
to identify highly similar documents and informed decisions need to be made with respect
to the thresholds that need to be applied in order to strike the right balance between the
number of documents retained and the degree of similarity of these which could affect
model bias.

Finally, good knowledge of evaluating model performance is required. Knowledge of
metrics such as accuracy, prevision, recall and potentially having to apply trade-offs
between these metrics can sometimes be necessary.
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AWS platform / DevOps

All the services used as part of the evaluation prototype were delivered using serverless or
Paas services rather than needing to provision virtual networks or compute instances and
the depth of expertise that this would require. Nevertheless, AWS platform skills are
required to configure roles and permissions and connectivity between services were this
relies on security group configuration.

Whilst most of the AWS services can be used through the web console Ul, the benefits of
the platform are only truly redlised once the services and processes are automated both
in their provisioning and in the ongoing monitoring and continuous improvement of an
end-to-end service.

AWS CloudFormation is the recommended tool for provisioning resources through an
Infrastructure-as-Code approach.

The benefits of this are:

e Speed - spin up the entire service end-to-end stack using a script, which can be
automated via continuous delivery processes

e Consistency and repeatability — provisioning services has manual human
intervention removed from the process

¢ Cost and time saving - reduced time to provision, reduced manual intervention,
ability to quickly and consistently spin down resources when not in use

e Reducedrisk —1aC is a form of documentation, changes can be strictly tracked
and managed via version control, less risk of knowledge being siloed with individual
engineers

CloudFormation resources were created for some elements of the evaluation such as IAM
roles and policies, but not the majority of the pipeline due to time constraints. It is firmly the
recommended approach to take services through to production on the AWS platform.

9.  Future Research and Development

9.1 Scalability and Solution Architecture

To recap the deployment architecture from section 5.1.3 Pipeline Development, AWS
Fargate was used to deploy multiple versions of the text processing task which could be
scaled out to process different subsets of the input document sets.

The partitioning of the data for the prototype solution was fairly simple — splitting up the
data set by folder path based on the number of files to be processed.

To aid this, an index was produced which could be used to filter the list of files by file
extension or by a folder name prefix.

There are several options which could be considered for future work with the current
solution:

e Add amodule to the code which can determine at run-time how many files in the
index should be processed by each task

¢ Move the index to a dedicated database solution such as DynamoDB or RDS and
enrich with additional metadata. Currently the index only includes basic file
information such as filename, extension, size and timestamps relating to
creation/modified dates

e Create a CloudFormation template to automate provisioning of the pipeline and its
configuration
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This solution provided a number of benefits for development of a prototype:

¢ No dedicated network or compute infrastructure required — solution is entirely on-
demand and serverless

¢ Allows use of Docker as a simple and consistent packaging mechanism for
bespoke code

e Low barrier to moving prototype SageMaker notebook code to a packaged
standalone Python application

In a production version of this application, AWS Elastic Map Reduce (EMR) could provide
an alternative solution with the following key points:

¢ Dedicated cluster configuration, but can still be run on-demand —i.e. suitable to a
periodic batch processing workload which does not run 24/7

e Highly parallelisable tasks such as text extraction from unstructured documents are
a natural use case for this framework. More sophisticated partitioning / load
balancing of the file processing could be achieved though the coding skills ands
framework knowledge required are more specialised. For example, some
knowledge of frameworks/tools such as Spark and Hive would be required to get
the most out of this service

e Much higher top-end scalability. Whilst a Fargate cluster can support up to 50
concurrent tasks it is not really intended to provide the same level of task
management, orchestration and general robustness of distributed workloads that
EMR is designed to handle

9.2 Additional Data Formats
Audio and Video

AWS provides the Transcribe service to provide speech-to-text functionality that aims to
match the quality of manual transcription at a fraction of the cost.

It supports both batch and real-fime franscription APIs.

It supports 16kHz and 8kHz audio streams and multiple audio encoding formats including
WAV, MP3, MP4 and FLAC.

Again, these formats match a relatively low percentage of the overall document corpus —
there are 91 files matching the extensions above in the Websites/Shared Drive data set.

As for document format processing there are also a wide range of open source solutions
which could be considered for integration into a bespoke batch process such as Kaldi
and Mycroft.

9.3 OtherTools
AWS Glue

Glue is a managed, serverless Extract Transform Load (ETL) tool. It is based upon open
source technologies such as Apache Hive and Spark. It can provide a number of benefits
for ETL jobs such as:

Data source crawling (i.e. to identify new files for processing through the pipeline)
Schema inference and suggests data format

Data cataloguing

Generates code for data fransformation pipelines
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Glue is better suited to structured / semi-structured data sources such as CSV or JSON
data where the powerful schema inference and data crawling capabilities can take
away a lot of the effort involved in building transformation pipelines. For unstructured
document and image data these capabilities are less relevant and it was found that
good metadata or catalogue information could not be generated for these sources

automatically.

This led to the simple solution used in the prototype of pre-indexing the $3 document data
with some basic accompanying metadata on file extensions and paths and sharing this

via a CSV stored in S3.

AWS Kendra

Not covered explicitly as part of this evaluation, but worth raising as Kendra is specifically

designed to process the types of file represented in the sample data sets.

Kendra provides enterprise search functionality for unstructured document data sets

stored in S3 and achieves this by using machine learning internally. The use of ML allows
data to be searched using natural language style queries.

It does also provide connectors to standard file systems, APls, SharePoint, SalesForce etc.

so it is not purely limited to S3.

Kendra is currently not available outside of the AWS US regions and also not specifically a

classification tool, therefore it did not fall within the scope of tools which could be

evaluated, but is included here for its potential utility for search on the TNA data corpus.

10. Appendix A

Multiclass model - Class performance

precision
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24B 0.99

25 0.91

28 1.00

33 0.91

micro avg 0.92
macro avg 0.94
weighted avg 0.92
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.90
.97
.92
.79
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.93
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.92
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19
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77
17
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402
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19
11
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11.
11.1

Appendix B

Costs and Hosting Requirements

All costs provided in this section are indicative and represent usage during the evaluation
prototype development against off-the-shelf AWS service costs and against the workloads
with filtering and data reduction in place.

In the development of production services, Amazon account owners will work in
partnership with clients to tailor pricing appropriately to service requirements and the

business case.

Cost Calculator

AWS provide a cost calculator tool which can be used to provide baseline costs against
off-the-shelf pricing:

https://calculator.s3.amazonaws.com/index.html

It allows multiple standard AWS services such as $3, RDS, EC2 etc. to be added and figures
entered for data consumption, throughput etc. To provide an estimate of ongoing
monthly operating costs.

All prices in USD.

Main Prototype Costs

Service
s3

ECS, ECR,
Fargate

SageMaker

Textract

Comprehend *

Description

Scalable file storage

Container services

Data science
notebooks

OCR service

NLP service

Base costs ($)
1st 50TB/mo: 0.023
Data fransfer out: 0.09

Transfer in + inter-service usage
is free

Fargate vCPU: 0.0128 p/hr
per GB: 0.0014 p/hr
ECR: 0.085 per GB stored

Dependent on underlying EC2
instance cost,

e.g. mlt2.large: 0.1299 p/hr

First milion pages: 0.0015
p/page

> 1 mill pages: 0.0006 p/page

Custom classifier training:
$3 per model per hour
Custom classification:

0.0005 per 100 characters

Usage
~375GB storage

+ general inter-
service usage for
the prototype

Fargate vCPU
and memory
usage over 2/3
week period plus
ECR image
storage

Ad-hoc
exploratory
analysis

Limited to PDFs
and images
which could not
be extracted
locally

Filter documents
> 100KB leaves
98% of the
documents and a
75% reduction in
character count
for classification

Usage cost

$15

$3

$65

$6

Classification
$594
Training

$283
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*The 100KB limit on text inputs to the Comprehend classifier is a measure taken within the
constraints of the evaluation timeframe, the recommendation from Amazon is to filter the
file list based on document size, but by using techniques to reduce document content
and thus character count — the end result on reducing cost will be much the same, but
with even better coverage on % of documents processed. Adopting this
recommendation would be the correct route to explore in a production service.

12. Commercial statement
Confidentiality and copyright
© Kainos Software Limited 2019 ("Kainos")

The contents of this document are commercial and confidential in nature and the
copyright of Kainos. This document must not be reproduced (in whole or in part) save in
connection with the purpose for which it was issued.

Trademarks

Kainos® is a registered trademark of Kainos Software Limited. All rights reserved. You may
not delete or change or modify any copyright or trademark notice.

Caveats

Kainos has used dll reasonable endeavours to ensure that the contents of this document
are accurate but is not responsible for any errors or omissions.

All information provided prior to execution of a contract is provided 'as is' and ‘subject to
contract' without warranty of any kind.

This document does not constitute an offer from Kainos. In the event that the parties elect
to work together, they will only be contractually bound to each other upon signature of a
contract.

Corporate information

"Kainos" is the tfrading name of the Kainos group of companies, further information on
which can be found here: https://www.kainos.com/corporate-information/.

Kainos Software Limited/ Kainos Software Ireland Limited / Kainos Evolve Limited / Kainos
Evolve Inc./ Kainos WorkSmart Limited / Kainos WorkSmart Inc./ Kainos WorkSmartJ GmbH /
Kainos WorkSmart ApS / Kainos WorkSmart Canada Inc./ Kainos WorkSmart SAS will be the
contracting entity under this tender / for the provision of the service and may be assisted
from time to time by other Kainos group companies.

Freedom of information

Kainos considers that the following information provided in this document is exempt from
disclosure under the Freedom of Information Act 2000 (FOI):

The CVs of staff qualify under the "Personal Information Exemption (s.40)" of the Freedom
of Information Act and are exempt from disclosure under the Data Protection Act 1998. Th
Period for which this information should be confidential is the lifetime of the Data Subject.

©Kainos2019 COMMERCIAL-INCONFIDENCE 34/35



Subject to Coniract
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Rate and pricing information is confidential and commercially sensitive and covered by
the 'Commercial Interests' exemption (s.43) of the FOI, as the release of this information is
likely to prejudice the commercial interests of Kainos and is likely to adversely affect its

(and the Customer's) future negotiating position. The period that this information should be
confidential for should be 5 years.

©Kainos2019 COMMERCIAL-INCONFIDENCE 35/35



kainos.com
Follow our story:
, @KainosSoftware

“ Search ‘Kainos’

B searchkainos’




